martes, 7 de mayo de 2013

FUNCIONES BASICAS DE INTEGRACION



INTEGRACION
La integración es fundamental en las matemáticas avanzadas especializadas en los campos del cálculo. Una integral es una ANTIDERIVADA, es decir, la operación inversa a la derivada.
Formulas básicas de integración.
Recordemos que como en las derivadas, las integrales poseen reglas, propiedades y formulas para su procedimiento. Las integrales poseen un signo en su inicio en forma de S alargada y con una terminación de dx, esto las diferencia de otras ecuaciones. Una integral a realizar siempre ira acompañada de una S alargada al inicio y un dx al final. Estas son las formulas básicas de integración.

La integral de “n” numero siempre será nx + C. Ejemplo

La integral de una constante siempre será constante * variable +C (ax+C)

La integral de X elevado a “n” numero será Xn+1, lo que se haga en la exponenciación de la X se pondrá también abajo dividiéndola, es una regla establecida. Ejemplo

La integral que divide arriba sobre una variable abajo será logaritmo natural de variable mas C. La formula marca lnX+C porque arriba en dx no tiene constante ni variable pero sí un 1 imaginario, ejemplo.

La integral de un producto se puede separar siempre y cuando no se altere su ecuación. De esta forma se integra en partes. No tienen que ser 3 productos necesariamente para usar la formula ;)  Ejemplo.


FIGURA